HISTORICAL CONTROL DATA OF SPERM ANALYSES
FROM 2-GENERATION AND FERTILITY STUDIES
IN HsdRccHan™: WIST, Wistar Hannover Rats

Compiled from 2-Generation and Fertility Studies performed at RCC Ltd. Itingen/Switzerland
Contents:

Table 1: Study identification 3
Table 2: Sperm analysis - motility 4
Table 3: Sperm analysis - morphology 5
Table 4: Sperm analysis - sperm head count 8
Table 5: Statistics sperm analysis - motility 9
Table 6: Statistics sperm analysis - morphology 10
Table 7: Statistics sperm analysis - sperm head count 11
Table 1: Study identification

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Number of study</th>
<th>Date of performance</th>
<th>GEN/Seg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>842842</td>
<td>2002 / 2003</td>
<td>2- Gen.</td>
</tr>
<tr>
<td>3</td>
<td>858666</td>
<td>2005</td>
<td>Seg I</td>
</tr>
<tr>
<td>4</td>
<td>A10934</td>
<td>2005</td>
<td>Seg I</td>
</tr>
</tbody>
</table>
Table 2: Sperm analysis - motility

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not motile</td>
<td>mean</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>24</td>
<td>9*</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Stat. motile</td>
<td>mean</td>
<td>34</td>
<td>30</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>24</td>
<td>9*</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Prog. motile</td>
<td>mean</td>
<td>53</td>
<td>58</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>24</td>
<td>9*</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F1 - Generation</th>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not motile</td>
<td>mean</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stat. motile</td>
<td>mean</td>
<td>30</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>10</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prog. motile</td>
<td>mean</td>
<td>58</td>
<td>58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>11</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* = Animal No. 10: small left testis & epididymidis; excluded from summary tables
Table 3: Sperm analysis - morphology

<table>
<thead>
<tr>
<th>P-Generation</th>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mean</td>
<td>93.3*</td>
<td>94.4**</td>
<td>93.6**</td>
<td>93.1**</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>2.3</td>
<td>0.9</td>
<td>2.8</td>
<td>1.9</td>
</tr>
<tr>
<td>n (litters)</td>
<td></td>
<td>24</td>
<td>9***</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>mean</td>
<td>3.2*</td>
<td>1.9**</td>
<td>2.81**</td>
<td>2.8**</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>1.5</td>
<td>0.6</td>
<td>2.66</td>
<td>1.5</td>
</tr>
<tr>
<td>n (litters)</td>
<td></td>
<td>24</td>
<td>9***</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>C</td>
<td>mean</td>
<td>0.8*</td>
<td>0.4**</td>
<td>0.8**</td>
<td>0.6**</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>0.8</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>n (litters)</td>
<td></td>
<td>24</td>
<td>9***</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>D</td>
<td>mean</td>
<td>2.3*</td>
<td>3.0**</td>
<td>2.4**</td>
<td>3.0**</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>n (litters)</td>
<td></td>
<td>24</td>
<td>9***</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>E</td>
<td>mean</td>
<td>0.0*</td>
<td>0.0**</td>
<td>0.0**</td>
<td>0.0**</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>n (litters)</td>
<td></td>
<td>24</td>
<td>9***</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>F</td>
<td>mean</td>
<td>0.4*</td>
<td>0.3**</td>
<td>0.4**</td>
<td>0.5**</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>n (litters)</td>
<td></td>
<td>24</td>
<td>9***</td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3: Sperm analysis - morphology. Cont'd

<table>
<thead>
<tr>
<th>F1-Generation</th>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mean</td>
<td>92.6*</td>
<td>94.4*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>2.3</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>mean</td>
<td>2.9*</td>
<td>1.9*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>1.4</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>mean</td>
<td>0.9*</td>
<td>0.5*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>mean</td>
<td>3.2*</td>
<td>2.4*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>1</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>mean</td>
<td>0.1*</td>
<td>0.0*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>mean</td>
<td>0.3*</td>
<td>0.7*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%</td>
<td>st. dev.</td>
<td>0.3</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3: Sperm analysis - morphology. Cont'd

<table>
<thead>
<tr>
<th>*</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = Normal, complete sperm</td>
<td>A = Sperm with normal hook and tail</td>
</tr>
<tr>
<td>B = Normal head only (tail)</td>
<td>B = Normal hook without tail</td>
</tr>
<tr>
<td>C = Complete sperm with</td>
<td>C = Misshapen sperm hook with tail</td>
</tr>
<tr>
<td>D = Complete sperm with</td>
<td>D = Sperm with abnormal curved hook</td>
</tr>
<tr>
<td>E = Complete sperm with reversed</td>
<td>with tail</td>
</tr>
<tr>
<td>F = Abnormal head only (tail)</td>
<td>E = Sperm with reversed hook with tail</td>
</tr>
<tr>
<td></td>
<td>F = Abnormal hook without tail</td>
</tr>
</tbody>
</table>

*** = Animal No. 10: small left testis & epididymis; excluded from summary tables
Table 4: Sperm analysis - sperm head count

<table>
<thead>
<tr>
<th>P-Generation</th>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>657.6</td>
<td>685.7</td>
<td>591.1</td>
<td>696.8</td>
</tr>
<tr>
<td>Cauda Epidid</td>
<td>mean</td>
<td>657.6</td>
<td>685.7</td>
<td>591.1</td>
<td>696.8</td>
</tr>
<tr>
<td>mio/g Org.</td>
<td>st. dev.</td>
<td>76.5</td>
<td>174.6</td>
<td>54.56</td>
<td>66.58</td>
</tr>
<tr>
<td>n (litters)</td>
<td>24</td>
<td>9*</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>mean</td>
<td>137.1</td>
<td>139.6</td>
<td>117.7</td>
<td>134.1</td>
</tr>
<tr>
<td>mio/g Org.</td>
<td>st. dev.</td>
<td>21.68</td>
<td>14.88</td>
<td>11.32</td>
<td>15.96</td>
</tr>
<tr>
<td>n (litters)</td>
<td>24</td>
<td>9*</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F1-Generation</th>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>575.5</td>
<td>652.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cauda Epidid</td>
<td>mean</td>
<td>575.5</td>
<td>652.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mio/g Org.</td>
<td>st. dev.</td>
<td>75.96</td>
<td>126.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>mean</td>
<td>115.1</td>
<td>137.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mio/g Org.</td>
<td>st. dev.</td>
<td>11.87</td>
<td>28.31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n (litters)</td>
<td>23</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* = Animal No. 10: small left testis & epididymidis; excluded from summary tables
Table 5: Statistics sperm analysis - motility

P-Generation

<table>
<thead>
<tr>
<th>Unit</th>
<th>Total n</th>
<th>Mean</th>
<th>STDEV</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not motile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>53</td>
<td>13.25</td>
<td>0.96</td>
<td>12.00</td>
<td>14.00</td>
</tr>
<tr>
<td>n (litters)</td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Stat. motile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>116</td>
<td>29.00</td>
<td>4.55</td>
<td>23.00</td>
<td>34.00</td>
</tr>
<tr>
<td>n (litters)</td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Prog. motile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>230</td>
<td>57.50</td>
<td>4.20</td>
<td>53.00</td>
<td>63.00</td>
</tr>
<tr>
<td>n (litters)</td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
</tbody>
</table>

F1 -Generation

<table>
<thead>
<tr>
<th>Unit</th>
<th>Total n</th>
<th>Mean</th>
<th>STDEV</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not motile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>24</td>
<td>12.00</td>
<td>0.00</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>n (litters)</td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>Stat. motile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>60</td>
<td>30.00</td>
<td>0.00</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>n (litters)</td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>Prog. motile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>116</td>
<td>58.00</td>
<td>0.00</td>
<td>58.00</td>
<td>58.00</td>
</tr>
<tr>
<td>n (litters)</td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
</tbody>
</table>

* = Animal No. 10: small left testis & epididymidis; excluded from summary tables
Historical control data of sperm analyses from 2-generation and fertility studies in HsdRccHan™: WIST, Wistar Hannover Rat

Table 6: Statistics sperm analysis - morphology

<table>
<thead>
<tr>
<th>P-Generation</th>
<th>Unit</th>
<th>Total n</th>
<th>Mean</th>
<th>STDEV</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mean n (litters)</td>
<td>374</td>
<td>93.60</td>
<td>0.57</td>
<td>93.10</td>
<td>94.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>B</td>
<td>mean n (litters)</td>
<td>11</td>
<td>2.68</td>
<td>0.55</td>
<td>1.90</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>C</td>
<td>mean n (litters)</td>
<td>3</td>
<td>0.65</td>
<td>0.19</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>D</td>
<td>mean n (litters)</td>
<td>11</td>
<td>2.68</td>
<td>0.38</td>
<td>2.30</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>E</td>
<td>mean n (litters)</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>F</td>
<td>mean n (litters)</td>
<td>2</td>
<td>0.40</td>
<td>0.08</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
</tbody>
</table>

Table 6: Statistics sperm analysis - morphology. Cont'd

<table>
<thead>
<tr>
<th>F1-Generation</th>
<th>Unit</th>
<th>Total n</th>
<th>Mean</th>
<th>STDEV</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mean n (litters)</td>
<td>187</td>
<td>93.50</td>
<td>1.27</td>
<td>92.60</td>
<td>94.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>B</td>
<td>mean n (litters)</td>
<td>5</td>
<td>2.40</td>
<td>0.71</td>
<td>1.90</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>C</td>
<td>mean n (litters)</td>
<td>1</td>
<td>0.70</td>
<td>0.28</td>
<td>0.50</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>D</td>
<td>mean n (litters)</td>
<td>6</td>
<td>2.80</td>
<td>0.57</td>
<td>2.40</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>E</td>
<td>mean n (litters)</td>
<td>0</td>
<td>0.05</td>
<td>0.07</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>F</td>
<td>mean n (litters)</td>
<td>1</td>
<td>0.50</td>
<td>0.28</td>
<td>0.30</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
</tbody>
</table>
Table 7: Statistics sperm analysis - sperm head count

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Total n</th>
<th>Mean</th>
<th>STDEV</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauda Epidid</td>
<td>mean</td>
<td>2631</td>
<td>657.80</td>
<td>47.43</td>
<td>591.10</td>
<td>696.79</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>372</td>
<td>93.05</td>
<td>55.09</td>
<td>54.56</td>
<td>174.58</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Testis</td>
<td>mean</td>
<td>528</td>
<td>132.12</td>
<td>9.87</td>
<td>117.71</td>
<td>139.61</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>64</td>
<td>15.96</td>
<td>4.30</td>
<td>11.32</td>
<td>21.68</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>76</td>
<td>19.00</td>
<td>6.78</td>
<td>9.00</td>
<td>24.00</td>
</tr>
<tr>
<td>F1-Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauda Epidid</td>
<td>mean</td>
<td>1228</td>
<td>614.13</td>
<td>54.57</td>
<td>575.54</td>
<td>652.72</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>202</td>
<td>101.16</td>
<td>35.64</td>
<td>75.96</td>
<td>126.36</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>Testis</td>
<td>mean</td>
<td>252</td>
<td>126.21</td>
<td>15.75</td>
<td>115.07</td>
<td>137.35</td>
</tr>
<tr>
<td></td>
<td>st. dev.</td>
<td>40</td>
<td>20.09</td>
<td>11.62</td>
<td>11.87</td>
<td>28.31</td>
</tr>
<tr>
<td></td>
<td>n (litters)</td>
<td>33</td>
<td>16.50</td>
<td>9.19</td>
<td>10.00</td>
<td>23.00</td>
</tr>
</tbody>
</table>